Sunday, January 4, 2009

Volcanoes

The build-up of molten rock in a volcano before it erupts is like the gases in a shaken bottle of champagne. If the amount of gas in a volcano’s magma is high, the inevitable release leads to massive explosions.

wpeD.jpg (17794 bytes)

The amount of gas inside magma—molten rock—is one of the most important indicators determining how violent an eruption will be. The viscosity, or thickness, of magma is another important factor. Under ground, gases remain suspended under pressure in the magma, but when magma rises to the lower pressures of the surface, the gases expand. Volcanoes with less gaseous and more fluid magma usually have less violent eruptions because the small amount of gas easily escapes from the lava into the air.

Thick, sticky magma, on the other hand, slows down the escape of gases and may also block a volcano’s main vent. When the gases are finally released, they burst out of the lava in furious and turbulent blasts. These explosive eruptions are characterized by large clouds of flying rock particles, rather than lava flows.

Volcanic Products

Volcanoes emit a variety of substances, with varying degrees of force. These substances are lava, pyroclastic material, ash, and gases.

Lava is magma that reaches the surface. This liquefied rock is many times hotter than boiling water and glows bright yellow, orange, and red. Lava may erupt in explosive bursts, like giant fountains, or flow gently down the slopes of a mountain. Lava can leave a volcano from the top vent or emerge from vents along the sides.

Except for the molten rock that lands back inside the main crater to continue bubbling, all lava eventually cools and solidifies. Some lava cools quickly, on or near the volcano, but more fluid lava may travel for miles before slowly congealing into rock. Over time, solidified lava from different eruptions steadily increases the size and height of the volcano.

wpeE.jpg (35557 bytes)

All fragments thrown into the air by a volcanic eruption are called pyroclastics. During a more violent eruption, the force of the blast sends superhot gas and millions of pieces of lava into the air. These particles are classified as bombs, cinders, or ash, depending on their size and shape. Small pieces of lava, which solidify almost immediately, form slivers of volcanic glass.

Together with rocks blown from the sides of a volcano, the entire collection of ejected material becomes a hot, fast-moving cloud of rock and ash. These flows can travel at great speed down the flanks of a volcano and into surrounding areas, causing extensive destruction. In 1902 the eruption of Mount Pelée, on the island of Martinique, created this type of pyroclastic blast and destroyed the town of Saint-Pierre, killing about 30,000 people.

Like lava, pyroclastic material raining down on a volcano eventually compacts into solid layers that build up the volcano’s bulk. Some eruptions actually reduce the height of a volcano, because they are so powerful that they literally blow the top of the volcano off. In 1883 the cataclysmic explosion of Krakatau in Indonesia destroyed most of the island, which had been formed by the volcano.

Volcanoes often spew great quantities of ash many kilometres into the air. This fine ash can drift for thousands of kilometres, falling on distant lands, yet the smallest particles of dust may remain suspended in the atmosphere for months. The uprush of gas and vapours from the Krakatau eruption reportedly carried fine ash to a height of 27 kilometres (17 miles). In addition to creating colourful sunsets for many months afterwards, the vapour and ash clouds can have long-lasting effects on the atmosphere and climate.

Steam and other gases such as carbon dioxide, hydrogen, carbon monoxide, and sulphur dioxide continuously escape from the surface of lava. Volcanic areas can emit harmful gases in immense quantities. In 1986 a volcanic lake in northern Cameroon released toxic gases that killed more than 1,700 people.

The danger to life posed by active volcanoes is not limited to the eruption of molten rock or showers of ash and cinders. Disastrous mudflows are an equally serious hazard. One triggered by a small eruption that melted ice and snow on Ruiz Peak volcano in Colombia claimed more than 25,000 lives in 1985, one of the worst volcanic disasters in the 20th century. Some mudflows may occur long after an eruption is over, when heavy rains saturate loose volcanic debris. In addition, eruptions near glaciers can melt vast quantities of ice, resulting in damaging floods. Iceland occasionally suffers these massive floods, known there as Jökulhlaup.


Volcanic Landforms
The shapes of volcanoes vary according to the types of particles thrown from the volcano during eruptions. The beautifully symmetrical cones of Mount Fuji in Japan and Mayon in the Philippines are examples of strato-volcanoes, or composite volcanoes. This type of volcano emits a combination of lava and pyroclastic material. The mixture allows the successive layers to solidify and support additional mass. Strato-volcanoes are the highest and steepest volcanoes in the world. volcanoes1.gif (72662 bytes)

Volcanoes that consist predominantly of pyroclastic materials are called cinder cones. These mountains, such as Capulin Mountain in New Mexico (USA), are easily eroded and usually do not reach great heights. Shield volcanoes, on the other hand, are predominantly lava-based landforms that have gradual slopes and wide bases, because they release fluid lava slowly. These volcanoes can create huge landforms. Mauna Loa and Mauna Kea on the island of Hawaii (The Big Island) are classic examples: Mauna Kea has a base on the ocean floor more than 200 kilometres (120 miles) wide.

Under certain circumstances, instead of issuing from a central vent, lava pours out along cracks, or fissures, that may extend for several kilometres across the land surface. Flows of this sort have created thick sheets of basalt covering thousands of square kilometres. The Deccan Plateau in India, which covers more than 500,000 square kilometres (200,000 square miles), was formed in this way. The Columbia Plateau in the northwest United States is another example. In modern times, fissure eruptions on a smaller scale have been observed in Iceland and Hawaii.

Some enormous, craterous basins called calderas, at the top of long-dormant or extinct volcanoes, form when a massive explosion forces the upper part of a volcano to collapse. Some of these calderas eventually fill with water, forming deep lakes, such as the picturesque Crater Lake in the northwest US.


States of Volcanic Activity
Volcanoes can be active, dormant, or extinct. Active volcanoes have erupted in a relatively recent period. There are more than 500 active volcanoes on continents or islands; thousands more exist under the oceans. Many active volcanoes are in the Ring of Fire, a zone of seismic and volcanic activity that encircles the Pacific Ocean. Izalco Volcano, in El Salvador, has been erupting since 1770. Other active volcanoes include Stromboli in the Aeolian Islands near Sicily, and Cotopaxi in the Andes of Ecuador. wpeF.jpg (14413 bytes)

Dormant volcanoes are those that have not erupted for many years, but have the potential to erupt again. The eruption that follows prolonged dormancy is usually violent, as was the explosion in 1980 of Mount Saint Helens in the northwest US, after 123 years of inactivity. The massive eruption in 1991 of Mount Pinatubo, in the Philippines, came after six centuries of dormancy.

Extinct volcanoes have not erupted in thousands of years and show no signs of doing so in the future. Mount Kenya, the second highest mountain in Africa, is an extinct volcano. Edinburgh Castle, in Scotland, sits on top of an extinct volcano.


Creation of Volcanoes

Most active volcanoes ultimately derive their energy from processes associated with the theory of plate tectonics. Volcanoes tend to coincide with major plate boundaries, though some, like the Hawaiian Islands, formed over hot spots in the earth's surface far from plate boundaries.

wpe10.jpg (19371 bytes)

At subduction zones, where one plate moves beneath the other, the subducted plate is dragged downwards into the earth's mantle until it reaches a depth where high temperatures partially melt the rock. The resulting magma then rises along vertical fissures and reaches the surface through a volcanic vent. Volcanoes along the Andes in South America and the Cascade Range in North America are examples of volcanoes that formed on continental crust overlying subduction zones. When fissures open up on the seafloor, volcanic islands form as a result, such as Japan and the Philippines.

At divergent plate boundaries, where two plates move away from each other, magma wells up along the linear boundary. Iceland is a volcanic land mass on top the Mid-Atlantic Ridge, a divergent plate boundary. New additions along this ridge, such as the island of Surtsey, still continue to be created. A third type, known as transform boundaries, exists when two plates slide alongside each other. The interaction of plates at a transform boundary, such as the San Andreas Fault in the western United States, does not normally lead to volcanic activity.


Hot Spots

Hundreds of hot spots exist around the world. These are areas in the lithosphere that are underlain by unusually hot magma. This heat causes partial melting of the lithosphere, eventually leading to volcanic activity. The Hawaiian Islands are a classic example of a volcanic grouping formed over one hot spot.

volcanoes2.gif (103627 bytes)

Over thousands of years, as the Pacific Plate inched its way in a northwest direction, the stationary hot spot underneath the plate successively created volcanoes above it. Several of these volcanoes reached the ocean’s surface, forming the Hawaiian Islands.

As the plate continued to move, volcanoes, embedded in the plate, travelled away from the source of magma and eventually became extinct. This hot spot still continues to create new volcanoes. Thus, the islands are progressively younger from the northwest to the southeast. Several volcanoes in the chain are still quite active, and new underwater volcanoes are forming to the southeast of Hawaii as the Pacific Plate continues to move over the hot spot.

Humans and Volcanoes

Volcanoes are an important aspect of many cultures. One of the most famous and beautiful volcanoes in the world is Mount Fuji in Japan, which last erupted in 1708. According to legend, Mount Fuji arose from the plain during a single night in 286 BC. Geologically, the mountain is much older than the legend asserts. Certain religious sects regard the mountain as a sacred place. Thousands of pilgrims from all parts of the country visit Mount Fuji annually, and numerous shrines and temples are on its slopes. Mount Fuji is also revered in Japanese literature and art.

Volcanoes, when not causing mass destruction, can actually benefit humans. For example, they may provide extremely fertile land for crops and forests. Vineyards and orchards now cover the lower slopes of Mount Vesuvius, which destroyed the town of Pompeii in AD 79 in a pyroclastic explosion. Higher up, oaks and chestnut trees grow. Volcanoes, when inactive, can also provide areas for sightseeing, hiking, and camping, and many have become parks. Tourism often results from continuous or recent volcanic eruptions. Many people visit Hawaii Volcanoes National Park to view the spectacular lava flows from a safe distance.

Scientific Inquiry

Geologists and volcanologists, who specifically study volcanoes, attempt to increase our knowledge of volcanoes and try to predict when eruptions will occur. Volcanic earthquakes and changes in the shape of volcanoes are two signals of impending eruptions. Like earthquakes, however, volcanoes can be unpredictable, and those who live in their vicinity are constantly at risk.

No comments:

Post a Comment

Search

Google

Intense Debate Comments